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Abstract. A nonlinear, compressible, spectral collocation code is employed 
to examine gravity wave breaking in two and three spatial dimensions. Two- 
dimensional results exhibit a structure consistent with previous efforts and suggest 
wave instability occurs via convective rolls aligned normal to the gravity wave 
motion (uniform in the spanwise direction). Three-dimensionM results demonstrate, 
in contrast, that the preferred mode of instability is a series of counterrotating 
vortices oriented along the gravity wave motion, elongated in the streamwise 
direction, •nd confined to the region of convective instability within the wave 
field. Comparison of the two-dimensional results (averaged spanwise) for both 
two- and three-dimensional simulations reveals that vortex generation contributes 
to much more rapid wave field evolution and decay, with rapid restoration of 
near-adiabatic lapse rates and stronger constraints on wave energy and momentum 
fluxes. These results also demonstrate that two-dimensional models are unable to 
describe properly the physics or the consequences of the wave breaking process, at 
least for the flow parameters examined in this study. The evolution and structure 
of the three-dimensional instability, its influences on the gravity wave field, and 
the subsequent transition to quasi-isotropic small-scale motions are the subjects of 
companion papers by Fritts et M. (this issue) and Isler et al. (this issue). 

Introduction 

Atmospheric gravity waves were first studied in con- 
nection with airflow over orography and atmospheric 
fluctuations at greater altitudes several decades ago. 
More recently, they have enjoyed a resurgence of in- 
terest with the recognition of their major role in the 
transports of energy and momentum throughout the at- 
mosphere. This interest has focused on the wave-wave 
and wave-mean flow interactions accompanying wave 
propagation as well as the processes acting to limit wave 
amplitudes and control their spectral character. An im- 
portant component of this latter work was the attempt 
to understand the effects of wave field instability on 
wave amplitudes, turbulent diffusion, and the conver- 
gences of wave energy and momentum fluxes accompa- 
nying dissipation. 

Initial studies addressed the potential for gravity 
wave momentum transports and their effects due to 
wave dissipation [Bretherton, 1969; Holton and Lindzen, 
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1972]. These efforts were extended as our understand- 
ing of gravity wave transports and filtering improved 
[Holton, 1982; Dunkerton, 1982; Garcia and Solomon, 
1985; Palmer et al., 1986; McFarlane, 1987; Mcintyre, 
1989] . Other studies examined wave structure, evolu- 
tion, and dissipation near a critical level [Hazel, 1967; 
Fritts, 1979, 1982; Winters and D'Asaro, 1989; Dun- 
kerton and Robins, 1992] or the more general evolution 
of a gravity wave increasing in amplitude as density 
decreases [Fritts, 1985; Dunkerton, 1987; Walterscheid 
and Schubert, 1990; Huang et al., 1992]. In all these 
studies, however, wave propagation and instability were 
assumed to be two-dimensional (2-D), with all motions 
confined to the plane of wave propagation. Only more 
recently have gravity wave studies included consider- 
ation of three-dimensional (3-D) effects and instabil- 
ity structures in atmospheric and oceanic applications 
[Clark and Farley, 1984; Winters and Riley, 1992; Win- 
ters and D'Asaro, 1993]. 

There is, nevertheless, extensive literature on 3-D in- 
stability and transition to 3-D structure in free shear 
or convective layers which has relevance to our simu- 
lations. Evidence of streamwise vortex structures oc- 

curring in the presence of spanwise uniform Kelvin- 
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Plate 1. Potential temperature isosurface within the region of wave breaking for the three- 
dimensional simulation at t - 60 and 65 showing the emergence of instability structures. Wave 
propagation and positive x are toward the right. 

Itelmholtz (KH) instabilities and of their generation 
processes were provided in laboratory studies by Brow- 
and and Troutt [1980, 1985], Breidenthal [19811, Ji- 
memez [19831, Bernal and Roshko [1980], and Lasheras 
et al. [1986]. Parallel theoretical and modeling stud- 
ies by Pierrehumbert and Widnall [1982], Nagata and 
Busse [1983], Klassen and Peltlet [1985], and Melcalfe 
et al. [1987] examined the possible modes of instability 
and their relative importance under various flow condi- 
tions. Similar efforts addressed instability processes in 
sheared convection [Busse and Clever, 1979; Clever and 
Busse, 1992]. 

The purpose of this series of papers is to explore the 
3-D evolution and instability of a breaking gravity wave 
with a high-resolution numerical model. Specifically, we 
will (1) contrast this evolution with that obtained with 
an equivalent 2-D model; (2) evaluate the effects of 3-D 
instability on wave propagation, amplitude growth, and 
energy and momentum fluxes; and (3) examine the scale 
selection, spectral character, and growth of the 3-D in- 

stability. To enable the reader to appreciate the justifi- 
cation for such a study, we present in Plate 1 the poten- 
tial temperature surface in the region of wave breaking 
at two times during transition to instability structures 
in the 3-D simulation. Our effort parallels in some re- 
spects a similar study by Winters and D'Asaro [1993] 
of the 3-D evolution of a gravity wave near a critical 
level in an ocean environment at lower resolution. 

This paper is organized in the following manner. Our 
model formulation is presented in detail in section 2, as 
this represents the first application of the model in its 
current configuration. A high-resolution 2-D simula- 
tion of gravity wave breaking is presented in section 3 
for comparison with the 3-D evolution discussed in sec- 
tion 4. Section 5 presents the momentum flux profiles 
and the resulting mean flow evolution observed in the 
2-D and 3-D simulations and addresses the applicability 
of 2-D models to wave instability problems. Our com- 
parison of wave field evolutions in 2-D and 3-D is sum- 
marized in section 6. The companion papers by Frills 
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e! al. [this issue] and Islet e! al. [this issue] extend this 
analysis and focus, respectively, on the spectral evolu- 
tion and structure of, and the energy and momentum 
transports by, the transverse (ky • 0) 3-D instability 
and the subsequent transition to small-scale isotropic 
structure. 

A(x, y, z, t) - E E E a,m, (t) 
!-----N• ]2 m-----Ny]2 n-O 

ß exp{2•ri(/x + rny))T. (z), 

where the alrnn are complex coefficients and 

Model Formulation (z) - (3) 

Basic Equations 

The model used for our studies of gravity wave break- 
ing in two and three dimensions solves the equations ex- 
pressing conservation of mass, momentum, and energy 
(the Euler equations) describing nonlinear dynamics in 
an inviscid, compressible, stratified fluid. Included in 
these equations, however, are terms representing an ar- 
tificial diffusion to account for dissipation of energy at 
small scales in a manner permitting the physical de- 
scription of processes occurring at larger scales of mo- 
tion. These equations may be written in the form 

Op 
0-T + v. (pv) - 0, 

dv 

p•- -- --•7p + pg + F + P, 
• +7pV.v- Q, 

(1) 

where v - (u, v, w) is velocity, p is density, p is pres- 
sure, g is the gravitational acceleration, and ? is the 
ratio of specific heats. The pressure and density are 
related to temperature through the equation of state, 
p = pRT, and we use the potential temperature, de- 
fined as 0 = T(po]p) •t/cp with p0 a reference pressure, 
as an approximate tracer of fluid motions. 

The additional terms in the momentum and adiabatic 

energy equations include a source term F to excite grav- 
ity waves and artificial diffusion terms P and Q to re- 
duce the truncation errors caused by the nonlinear cas- 
cade of energy toward small spatial scales. The forms 
of these terms are described further below. 

Spectral Representation and Spectral Diffusion 

Equations (1) are solved in Cartesian coordinates 
(x, y,z), using a spectral collocation method described 
by Canuto et al. [1988]. We use a Fourier/Chebyshev 
representation of the solution where trigonometric func- 
tions and Chebyshev polynomials describe the horizon- 
tal and vertical structure, respectively. As a result, 
our solutions are periodic in the horizontal directions 
and admit nonperiodic solutions and boundary con- 
ditions at the horizontal boundaries. We also nondi- 

mensionalize all variables with respect to the density 
scale height H, the sound speed c•, with c• - 7gH, a 
timescale H/cs, and a reference temperature To, density 
p0, and pressure p0 for this and subsequent discussions. 
With these choices the atmosphere is isothermal and 
the nondimensional Brunt-Viiisiilii frequency squared is 
N2 = (7- 1)/72. 

The solutions are approximated by expressions of the 
form 

is the Chebyshev polynomial of order n. The domain of 
definition of the basis functions is 0 _• x < 2•r, 0 _• y < 
2•r, and -1 _• z _• 1. The computational domains are 
defined by (x0, y0, z0), the nondimensional domain sizes 
appropriate to each of two domains (see below). This 
choice of basis functions leads to a set of collocation 

points given by 

(xt, Ym, zn) - (2•rllNr, 2•rmlNy, cos(2•rn/Nz)), (4) 

with 0 _• l_• N•- 1, 0_• m_• Ny- 1, and 0_• n _• Nz. 
Spatial derivatives in the governing equations are then 
computed using fast Fourier transforms and Chebyshev 
recursion relations in a manner following Canuto et al. 
[1988], permitting a high degree of utilization of present 
vector/parallel computers. 

The diffusion terms P and Q are represented as 
spectral diffusion in our model formulation. This ap- 
proach was suggested by Tadmot [1989], who applied 
the method to one-dimensional shock waves, and adopted 
for a Fouricr/Chebyshev method for the present prob- 
lem by Andreassen et al. [1993]. These diffusion terms 
are 

Pi - E Tj (z)•-•x j Pj * i- 1 2, 3 (5) j=l • • • 

Q - (7 - 1)E TJ(z)•x•x • •J * , (6) j----1 

where the stars denote multiplication in spectral space, 
x - (x, y, z) is the nondimensional position vector, k - 
(kr, ky, k•) is the nondimensional wavenumber vector, 
and T is nondimensional temperature. 

The spectral viscosity coefficient pi is written in the 
form 

= 

where Ni is the number of collocation points in direc- 
tion xi, with the kinematic spectral viscosity varying 
inversely with density • 

= (s) 

The expression for thermal diffusivity is likewise given 
by 

= 

Finally, the functional forms of the Chebyshev weight 
function 9o and of the component spectral diffusion co- 
efficients ui(ki) and t•i(ki) are 

I 1, i - 1, 2, Ti(z) - 41 - z 2, i- 3 (10) 
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0. < ' i- a2Ni/k•, ki •_ av/-•, (11) 
where a • 1.5 is an empirical constant and Ni is the 
number of collocation points in direction i. This formu- 
lation of the diffusion has the advantages that it damps 
small scales in a manner similar to eddy diffusion, it 
leaves larger scales unaffected by dissipation, and the 
method can be proven to converge for several problems 
involving conservation laws as the threshold wavenum- 
bers increase and the diffusion coefficients decrease with 

increasing Ni as in equation (7)[Maday and Tadmot, 
1989; Chen e! al., 1992; Maday et al., 1993]. 

The dissipation terms in equations (1), given formally 
by equations (5) and (6), may be expressed at high 
wavenumbers as •7(y. •7v) in the momentum equation 
(after dividing by density) and V(•. VT)in the energy 
equation, where y is the kinematic viscosity coefficient, 
n is the thermal diffusion coefficient, and the ratio of 
these is the Prandtl number, Pr - y/•, which is • 0.71 
for air [Landau and Lifshiiz, 1959]. These dissipation 
terms were tuned in our code to provide physical spec- 
tral energy variations at large wavenumbers in order 
to avoid energy accumulation near the maximum wave- 
numbers in the region of wave instability at intermedi- 
ate levels of the upper domain. For the simulation re- 
sults presented here, these coefficients were taken to be 
y • 0.03 and • • 0.05 (nondimensionally) at the center 
of the upper domain, with values at the lower boundary 
of the lower domain of y0 - 0.0003 and •0 - 0.0005. 

Time Integration 

Solutions were advanced in time using an explicit 
second-order Runge-Kutta method with variable time 
steps to provide efficient computation for large scales of 
motion and to insure numerical stability as energy cas- 
caded to smaller spatial scales. Variable time steps also 
served as a tool to monitor the calculations and aid 

in tuning the spectral diffusion parameters discussed 
above. 

The required accuracy in our simulations was mod- 
erate in the ODE sense and the function evaluations 

were computationally expensive (~ 80- 90% of total 
computing time) and required large memory, suggest- 
ing that a low-order method should be used. As a re- 
sult, the widely used Runge-Kutta codes RK45 and DO- 
PRI5 requiring six and seven function evaluations per 
step were judged to be too expensive for our applica- 
tions. Our choice instead was a second-order scheme 

with third-order error estimation, RK2(3) [Andreassen 
et al., 1993]. Because the solutions varied strongly with 
height, it was also necessary to introduce a set of weight- 
ing functions to provide comparable sensitivity of the 
error estimator at all heights and for each physical vari- 
able. This yielded an increase in the time steps and a 
reduction in computing times by an order of magnitude. 

Domain Decomposition, Matching and Bound- 
ary Conditions 

Our spectral collocation code was designed to pro- 
vide efficient simulations of compressible dynamics in 

two and three spatial dimensions. As such, it was con- 
structed using two model domains in the vertical be- 
cause Chebyshev computational requirements vary as 
~ Nz • in each domain. Thus multiple domains stacked 
on top of each other can be more efficient than a single 
large domain with the same number of Chebyshev collo- 
cation points [Wasberg, 1992]. A further efficiency was 
achieved by allowing different Ni in the two domains 
to provide resolution where it was needed and to focus 
computational resources on the most relevant physics. 
In this particular experiment the lower and upper do- 
mains were scaled to nondimensional depths of z•,0 - 4 
and z2,0 = 1.5, with the first subscripts referring to the 
lower and upper domains, respectively, and each domain 
had horizontal dimensions x0 = 4 and y0 = 2. The hor- 
izontal components of the solution were required to be 
periodic given our choice of Fourier decomposition in 
x and y. Matching conditions at the interface between 
domains were specified by using the upwind character- 
istic values at the interface. This insured continuity of 
the field variables between domains. 

Finally, open boundary conditions were imposed at 
the lower boundary of the lower domain and the upper 
boundary of the upper domain to insure propagation of 
wave energy originating within the model domains out- 
ward with minimum influences of wave reflection on the 

interior solution. These boundary and interface con- 
ditions were formulated using pseudo-one-dimensional 
characteristics to describe propagation near the bound- 
ary/interface, as described by Wasberg and Andreassen 
[1990] and Andreassen et al. [1992]. 

It is convenient to write equations (1) in vector form, 

U, + AU• + BU• + CU• + b = D•U, (1•) 

where subscripts denote partial derivatives, 

p u p 0 0 0 
u 0 u 0 0 1/p 

U- v , .A- 0 0 u 0 0 
w 0 0 0 u 0 

p 0 7P 0 0 u 

w 0 0 0 
0 w 0 0 

0 0 w b- 0 , 

0 0 0 • 0 0 0 

v o p o o 
o v o o o 

o o v o lip 
o o o v o 

o o 7p o v 

p o 
o o 

o o , 
w lip 

7P w 

(13) 

and the term D2U is the dissipation term. 
To treat the horizontal boundaries, the matrixes 

and B are ignored and the vertical contribution of 
vanishes at the horizontal boundaries because of the 

Chebyshev weight functions (see equation (10)). The 
elements of ½ are assumed to be slowly varying and 
denoted with hats such that 
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U, + •U• - -b. (14) 

The eigenvalues and corresponding left eigenvectors of 
•are 

A1 - •- a,, ll - {0,0,0,-•, 1}, 
A• = •b, 1• = {0, 1,0,0,0}, 
Aa = •b, la = {0, O, 1, O, 0}, 
A4 - tb, 14 - { 1, 0, 0, 0, - 1/ 
A• - t5 + 2,, 1•- {0, 0, 0,/•,, 1}, 

(15) 
where ?:, is the sound speed. The characteristic vari- 
ables are defined as •Pi - l•i(li. U) with i - 1,..., 5. 
Then choosing/?i - 1, we obtain 

--tSfr,w + p, 

•b- v, (16) 
p 

•P4 q- (•Pl q- •P$)/2as 2 

U = •Pa . (17) 

+ 
To construct conditions at the upper and lower bound- 

aries, we note that "information" carried along the first 
and last characteristics is propagated with the sound 
speed in both directions relative to an observer mov- 
ing with the fluid, while the intermediate characteris- 
tics carry "information" with the velocity of the fluid. 
As long as the velocity is subsonic, there will be one 
inflow and one outflow fast characteristic, while the di- 
rection of the slow characteristics might change, de- 
pending on the solution. Whether inflow or outflow 
conditions apply for a specified location is determined 
at the previous time step. The variables correspond- 
ing to the slow inflow characteristics are related to the 
values near the boundary using an extrapolation pro- 
cedure based on the interior neighboring values at the 
previous time step. The variables corresponding to the 
fast incoming characteristic are equated to the values 
obtained assuming hydrostatic equilibrium. This gives 
smooth and stable results. The conditions at the in- 
terface between domains are formulated by using out- 
flow information from each domain to calculate the five 
characteristic variables and solve the system obtained 
for the physical variables at the new time step. 

Model Environment and Gravity Wave Forcing 

Initially, the medium was assumed to be in hydro- 
static equilibrium with constant nondimensional tem- 
perature T - 1 and a horizontal mean motion given 
by 

0, O_<z<4, Uo(z) - 0.2 (1 + cos{(3 - z/2)•r}), 4 < z _• 5.5. 
(18) 

The role of this shear flow was to confine the dominant 

wave activity within the upper model domain and avoid 

small-scale structures near domain boundaries. This 

function was selected such that the velocity Uo(z) at z = 
5 was equal to the horizontal phase speed of the forced 
wave, yielding an initial critical layer at that height. 

A gravity wave was forced in the lower domain by a 
vertical body force of the form 

f(x, z, t) - fo•(t)e -(*-•)•/*• sin{cot - kox} (19) 

V/•-/10, 
1, 

•(t) - 0V/,(t - 50)/10, 
0_<t_< 10, 

10 < t <_ 50, 
50 < t _< 60, 

60< t, 

(e0) 

where f0 - 0.02 is the forcing amplitude, 5 - 3 is the 
height of maximum force, and a = 0.5 expresses the 
width of the forcing. The horizontal wavenumber of 
the forcing was Ik01 = 2•r/xo = •r/2 and corresponds 
to a wavelength equal to the domain length. The fre- 
quency of the forcing was chosen to be w = •r/10, which 
is slightly below the Brunt-V•iis/il/i frequency and cor- 
responds to a horizontal phase speed of c = 0.2 and the 
initial mean horizontal velocity at z- 5. 

This forcing excited a gravity wave which increased 
smoothly in amplitude with time and decreasing den- 
sity and which yielded rapid vertical propagation and 
instability at upper levels. This resulted in initial con- 
vective instability in the upper domain near t ', 37 and 
z ' 4.75. At this time and location the intrinsic phase 
speed and period of the wave motion were ,, 20 ms -• 
and ,-, 20 rain and are representative of those gravity 
wave motions accounting for the dominant energy and 
momentum fluxes in the mesosphere and lower thermo- 
sphere. 

Interpolation and Initiation 
of Three-Dimensional Structure 

Our major objective in this series of papers is the 
description of the transition from 2-D to 3-D flows as 
a consequence of gravity wave breaking. Given this, 
the 3-D simulations were initiated from 2-D simula- 
tions at lower resolution at a time shortly before the 
occurrence of convective instability. With convective 
instability first occurring near t- 37, we converted to 
higher spatial resolution in x and z, added a transverse 
(y or spanwise) dimension, and inserted a broad, weak 
3-D noise spectrum at t - 35 to allow the subsequent 
flow instability to evolve in a physical manner. Without 
noise insertion the solution would have remained purely 
2-D indefinitely. 

Interpolation to a finer mesh was accomplished by 
simply increasing the number of spectral components 
Ni in x and z with zero initial amplitude. A third di- 
mension was added in a similar manner by associating 
all 2-D structures with ky - 0 and allowing for the sub- 
sequent evolution of and interactions among nonzero ky 
initiated by the insertion of a 3-D noise field. 

The 3-D noise spectrum was introduced into the den- 
sity field to trigger those instabilities that were favored 
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by the large-scale, 2-D flow. This noise spectrum had 
the form 

9(l•)- aoe'•i•'(1 -9 y/k• -9 ky • -9 k] )-4 (21) 

where a0 - 10 -5, • is a random number in the interval 
[0, 1], and 9(k) is chosen to decay with increasing [k[ as 
~ [k[ -4 to limit noise at large Ik[ in a manner consistent 
with increased dissipation at those scales. As a test, we 
also performed a simulation with a0 - 2.5 x 10 -4 and 
other parameters unchanged to assess the effects of a 
larger initial noise field on wave field evolution and in- 
stability. This larger noise amplitude resulted in more 
rapid wave instability and collapse (by At ~ 5) but did 
not influence instability scales or the effects of instabil- 
ity on the wave field evolution. Thus we present here 
only the results obtained with the smaller noise ampli- 
tude. 

Two-Dimensional Gravity Wave 
Breaking 

We present in this section a high-resolution simula- 
tion of gravity wave breaking in two dimensions to con- 
trast this evolution with the corresponding 3-D evolu- 
tion discussed below. This simulation was performed 
with Fourier-Chebyshev representation in (x,z) with 
96 x 49 components in each domain, yielding an ability 
to follow the evolution of the flow features to scales 

much smaller than the dominant wave scales. We 

present results, however, only in the upper domain as 
this was where the gravity wave achieved an unstable 
amplitude due to density decay and the presence of a 
mean shear at upper levels. The simulation was ex- 
tended to a nondimensional time of t - 90, equal to 
~ 2.5 periods of the forced wave after attainment of 
convective instability within the wave field. 
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Figure 1. Contours of potential temperature for the two-dimensional gravity wave simulation 
as seen in a frame moving with the wave at t - 55, 60, 65, 70, 75, 80, 85, and 90. 
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Potential Temperature and Velocity Fields 

The 2-D evolution is displayed with contours of po- 
tential temperature and perturbation velocity vectors in 
a reference frame moving with the gravity wave horizon- 
tal phase speed at intervals of At = 5 from t = 55 to 90 
in Figures i and 2. These reveal a 2-D breaking struc- 
ture in qualitative agreement with the results of Win- 
ters and D'Asaro [1989] and Walterscheid and Schubert 
[1990], with approximately isotropic rolling structures 
initiated within regions of convective instability. These 
rolls appear to result from the fluid motion exceeding 
the horizontal wave phase speed near the wave crest and 
contribute to the extraction of energy from the primary 
gravity wave. Nevertheless, the linear stability analysis 
by Winters and Riley [1992] suggests that these struc- 
tures may be a manifestation of dynamical instability. 
This interpretation is supported by very large values of 
the local velocity shear (see the discussion of Figure 9 in 
section below) near the time at which these structures 

begin to form (t -,, 70), which suggest local values of 
the Richardson number based on the large-scale wave 
and mean motions of Ri ,,, 0.1 or less. The billow struc- 

tures that result have initial orientations with generally 
negative correlations of u* and w *, where primes denote 
eddy fields and positive fluctuations are in the direction 
of horizontal wave propagation and upward, consistent 
with a downward transport of positive (x) momentum 
needed to stabilize the local shear flow (see Figures 1 
and 2). 

As the evolution proceeds, there is evidence of initial 
pairing of adjacent vortex structures and an apparent 
smooth, continuing transfer of wave energy to smaller 
scales. In particular, the billow structures in the bot- 
tom left-hand portion of the panels displayed in Figures 
i and 2 appear to increase in amplitude until t ,-, 85, 
at which time their vertical extent exceeds the vertical 

wavelength of the incident gravity wave. Thereafter, 
these billows begin to decay as additional eddy struc- 
tures appear and energy is dissipated at smaller scales 
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0.00 

t=55 
1.00 ................................................ 

0.75 .............................................. 
2a L:, :;, .. '.k/• .- - ._._-_*z-t_ 

t=65 

ED perturbation velocity 
t- 60 

'.2• :.-..--=--- ............ ::: ..... _. _-_-• 
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Figure 2. Perturbation velocity vectors for the simulation and times shown in Figure 1. 
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throughout the wave field. The small-scale flow features 
are accentuated with the perturbation velocity vectors 
in Figure 2 which show more clearly the departures from 
the incident wave structure and the sites of eddy kinetic 
energy enhancements. 

The effects of this nonlinear 2-D evolution on the am- 

plitude of the primary wave are seen in the potential 
temperature fields in Figure 1. These reveal a tendency 
for the wave motion to be saturated by the nonlinear 
transfer of energy to smaller scales but with persistent 
regions of convective instability and a significant degree 
of supersaturation due to the gradual rate of this trans- 
fer. Another measure of the degree of supersaturation 
of the incident wave motion is provided by comparing 
horizontal perturbation velocities with the intrinsic hor- 
izontal phase speeds at those heights. The phase speeds 
computed from the vertical wavelength of the incident 
wave motion (but not shown) reveal perturbation ve- 
locities exceeding their nominal saturated amplitudes 
by ,,, 30 to 50% throughout much of the region of wave 
instability. 

Two-Dimensional Kinetic Energy 
at Small Scales 

The evolution and energetics of small-scale struc- 
tures in the 2-D simulation are characterized using the 
spectral distribution of kinetic energy in x and the 
kinetic energy for various kr averaged over the layer 
0.2 _• z2/z2,o _• 0.6 as functions of time. Energy- 
content spectra are shown in Figure 3 to illustrate the 
dominant scales of the wave and eddy structures at the 
level of wave breaking. The averaged kinetic energy 
shown in Figure 4 better illustrates the global exchange 
of energy among the various components of the motion 
field. 

Referring to Figure 3, we note that instability is 
preceded by a nonlinear transfer of energy from the 
forced gravity wave to its harmonics at smaller horizon- 
tal scales, primarily [kr[- •r and 3•r/2 (wavenumbers 2 
and 3 relative to the horizontal domain). Once instabil- 
ity has occurred (after t ,,, 60), however, the dominant 

0.8 
2D kinetic energy spectra 

i•\ .............. t=90 0.6 t=80 

t=70 ' 

t=0 
o t=50 
o 0.4 
• . t=40 

0.2 :. • • ..','::.,. 

'":%.\ x..:f'.. ..." '.:.. 
":\•..x...:<..'-.. '•...."... 

0.0 •-- :'-.-.-:•';-•:'- .............. 
10 100 

IkJ' •/= 

Figure 3. Energy-content spectra of kinetic energy, 
E•(kr), for the two-dimensional gravity wave simula- 
tion at t - 40, 50, 60, 70, 80, and 90. 

response is at larger wavenumbers, with maximum am- 
plitudes at Ikl ~ 2•r to 3•r, corresponding to the small- 
scale structures seen in Figures 1 and 2. Wavenumbers 
Ikrl - •r and 3•r/2 are found to have phase structures 
in approximate agreement with the incident wave in the 
region of primary wave breaking, with evanescent struc- 
tures at higher and lower levels due to outward prop- 
agation and increasing intrinsic phase speeds. Higher 
harmonics are more nearly confined to the breaking re- 
gion and do not exhibit a clear phase structure with 
Z. 

The instability growth and its influences on the inci- 
dent gravity wave are illustrated more clearly in Figure 
4. Here we see that the incident wave ceases growth and 
begins a gradual decay at t ,,, 40, due to the decrease of 
wave forcing in the lower domain beginning at t - 50, 
the evolution toward smaller vertical scales within the 

wave field, and the associated reduction of energy trans- 
ports into the region of wave breaking. Harmonics of the 
incident wave with clear phase structure achieve their 
maximum amplitudes somewhat later, with energy at 
smaller scales growing rapidly during this interval in 
response to wave field instability and achieving a max- 
imum at t ,,, 85. It will be seen below, however, that 
the gravity wave amplitude obtained in this 2-D simu- 
lation is substantially larger than that occurring when 
3-D instabilities are permitted to evolve within the wave 
field. 

Three-Dimensional Gravity Wave 
Breaking 

To contrast gravity wave breaking in two and three 
dimensions, we present here results of a simulation per- 
formed with the same maximum resolution as above, 
but with a third dimension included with equal trans- 
verse resolution. This simulation was performed with 

• 5 

2D kinetic energy density 
i I I I I I i i i I 

Ik,I = 

Ik,I > _ 

__ -- -- --.-•---' '-- -- • - 

25 40 45 50 55 60 65 70 75 80 85 90 

time 

Figure 4. Kinetic energies in the upper domain aver- 
aged over 0.2 < z2/z2,o • 0.6 for the two-dimensional 
gravity wave simulation from t - 35 to 90. Solid, 
dashed, and dotted curves show the Ik•l- •r/2, •r, and 
> •r contributions, respectively. 
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Fourier-Fourier-Chebyshev representation in (z,y, z), 
with 96 x 48 x 49 components in the upper domain, 
64 x 32 x 33 components in the lower domain, x0 and 
z2,0 as above, and y0 = 2 in each domain. This yields 
isotropic resolution in the domain interiors and an abil- 
ity to follow the evolution of small-scale flow features 
toward isotropic motions in response to wave instabil- 
ity and the resulting energy cascade toward small scales. 
As in the 2-D simulation discussed above, the 3-D sim- 
ulation presented here was extended to t - 90 to de- 
scribe both the rapid initial instability evolution and its 
subsequent breakdown and transition to smaller-scale, 
isotropic motions. Results are again displayed only in 
the upper domain as this was where the gravity wave 
achieved an unstable amplitude. 

Three-Dimensional ky - 0 Potential 
Temperature and Velocity Fields 

To assess the effects of the 3-D transverse (ky • O) 
instability on the incident wave amplitude, we show in 
Figures 5 and 6 the potential temperature and pertur- 

bation velocity fields obtained for the ky = 0 compo- 
nents of the motion field at times corresponding to those 
fields in Figures i and 2. These reveal striking differ- 
ences between the 2-D and the 3-D ky = 0 evolutions 
and the amplitude limits imposed on the incident grav- 
ity wave by small-scale instability structures in each 
case. Whereas the 2-D evolution exhibits substantial, 
persistent overturning of the wave field and sustained 
and energetic activity at smaller scales, the 3-D evol- 
ution undergoes a rapid collapse of the initially large 
region of convective instability (due to the small initial 
noise amplitude) and is constrained at later times by 
the more vigorous vortex structures described in detail 
in the companion paper by Fritts et al. [this issue]. 

Differences between the two evolutions begin to ap- 
pear as early as t = 65 in the 2-D and 3-D ky = 0 fields 
shown. In each case, an isolated region of high poten- 
tial temperature is observed to form in response to the 
initial wave overturning and to persist until t ~ 75. 
But while this feature is entrained by the vigorous 2-D 
rolling structures in the 2-D simulation, no correspond- 
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Figure 5. Contours of potential temperature for the ky - 0 components of the three-dimensional 
gravity wave simulation at the times displayed in Figure 1. 
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Figure 6. Perturbation velocity vectors for the ku - 0 components of the three-dimensional 
gravity wave simulation at the times displayed in Figure 2. 

ing evolution or energetic 2-D motions are seen to occur 
in the 3-D simulation at later times. The 3-D wave col- 
lapse and energy transfer from the incident wave to the 
instability structures has no signature in the k• - 0 
motion field such as seen in the 2-D evolution shown in 
Figures i and 2. Instead, the dominant energy trans- 
fers and fluxes in the 3-D evolution are due to small- 
scale structures that are inherently three dimensional, 
with motions and vorticity in all three directions. These 
structures also clearly are much more effective at lim- 
iting the incident wave amplitude as early in the ev- 
olution as t -.- 65, where the degree of overturning in 
the 3-D k• = 0 potential temperature field is already 
substantially less than in the corresponding 2-D simu- 
lation. These departures accelerate with time, resulting 
in nearly adiabatic regions (as opposed to extended su- 
peradiabatic regions in the 2-D simulation) and much 
smaller wave velocities at heights of initial wave instabil- 
ity. At greater heights the 3-D k• = 0 wave amplitudes 
are constrained to values smaller than in the 2-D sim- 

ulation by the more rapid evolution of 3-D instability 
structures at smaller scales. 

The perturbation velocity fields likewise reveal large 
differences between the 2-D and the 3-D k• - 0 evol- 
utions (Figures 2 and 6). Until t = 70, the two fields 
are almost identical. Clear differences are apparent as 
early as t = 75, however, where the 3-D k• = 0 fields 
exhibit similar structures but with substantially smaller 
amplitudes. At later times the strong two-cell structure 
seen in the 2-D evolution is replaced by a weaker, sin- 
gle cell and eddy structures throughout the domain are 
strongly suppressed in the 3-D ku - 0 evolution. The 
relative energetics of the two simulations are addressed 
in more detail below. 

Given the comparisons presented above, it appears 
that 2-D simulations are largely unable to describe ei- 
ther the instability processes contributing to wave satu- 
ration or the implications of wave breaking for spectral 
evolution and transports of energy, momentum, heat, 
and constituents for gravity waves at higher intrinsic 
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frequencies. However, our results also suggest that 2-D 
simulations with an appropriate convective adjustment 
scheme may capture some of the qualitative effects of 
3-D instability on wave amplitudes and transports. 

Three-Dimensional Kinetic Energy 
at Small Scales 

The energetics of small-scale structures in the 3-D 
simulation are assessed as in the 2-D simulation dis- 

cussed above but with the kinetic energy computed sep- 
arately for motions with ky - 0 and ky • 0 to compare 
the energy transfers in the two simulations. Prior to 
t - 60, the 2-D and 3-D simulations are virtually iden- 
tical, with a nonlinear excitation of harmonics of the 
incident wave (at ky - 0) and a gradual decay of in- 
cident wave energy due to the evolution of the mean 
wind profile. Thereafter, however, the evolutions of 
the 2-D and 3-D simulations diverge in important ways. 
Whereas the 2-D simulation displays strong growth of 
the KH structures at smaller scales (Ikxl > ½r), the 3-D 
simulation exhibits much weaker growth of the higher 
harmonics at ky - 0 and much more rapid growth (ap- 
proximately twice the growth rate of the 2-D motions 
at large Ikxl) of the kinetic energy of structures with 
ky • 0 (see Figure 7). This eddy kinetic energy growth 
in the 3-D simulation is associated with vortex struc- 

tures that distort the isosurfaces of potential tempera- 
ture in Plate I and which are discussed further by Fritts 
et al. [this issue]. These structures are a consequence 
of the primary mode of convective instability of the pri- 
mary wave motion when the evolution is not artificially 
constrained to two dimensions. The ky • 0 eddy struc- 
tures grow approximately exponentially until t ~ 70 
and achieve a maximum at t ~ 75, at which time the 
instability is fully developed and stongly influencing the 

incident wave structure. Thereafter, the primary wave 
is constrained to amplitudes very much smaller than 
permitted in the 2-D simulation because of the much 
more efficient energy extraction by the transverse, 3-D 
instability. 

Comparison of Momentum Fluxes and 
Mean Flow Evolutions 

We now consider the relative transports of momen- 
tum by the incident wave and the small-scale struc- 
tures occurring in the 2-D and 3-D simulations in order 
to contrast their influences on the mean velocity field. 
Thus we present profiles of the vertical flux of horizon- 
tal momentum (per unit mass), u'w', for the incident 
gravity wave, its harmonics at Ik•l > I and ky - O, and 
the instability structures at ky • 0 from t - 40 to 90 
for the 2-D and 3-D simulations in Figure 8. The net 
effects of these transports for the mean velocity profile 
in each case are compared in Figure 9. 
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Figure 8. Profiles of the vertical flux of horizontal 
(zonal) momentum for the incident gravity wave (solid), 
its harmonics with Ik½l > ½r/2 and ky = 0 (long- 
dashed), and the instability structures with ky • 0 
(short-dashed) obtained in the (a) two-dimensional and 
(b) three-dimensional gravity wave simulations at t = 
40, 50, 60, 70, 80, and 90. Successive profiles are dis- 
placed by 0.0007. 



8106 ANDREASSEN ET AL.: GRAVITY WAVE BREAKING IN TWO AND THREE DIMENSIONS, 1 

Mean wind 

1 .o ' iii ' 
0.8 I II 

0.6 t//: - 
0.4 / 

0.2 

0.0 

0.00 0.25 0.50 0.75 1.00 

Figure 9. Mean velocity profiles for the two- 
dimensional (dashed) and three-dimensional (solid) 
gravity wave simulations at the times shown in Figure 
8. Successive profiles are displaced by 0.1 and the initial 
profile is shown as a dashed curve at the left. 

Wave and Eddy Momentum Fluxes 

The 2-D and 3-D simulations exhibit almost identical 

wave fluxes of momentum prior to the attainment of en- 
ergetic instability structures and their associated limits 
on the incident wave amplitude. Because the instability 
structures evolve much more rapidly in the 3-D simula- 
tion, however, the incident wave fluxes of momentum in 
this case are strongly suppressed by t ~ 70 and much re- 
duced thereafter. This evolution proceeds more slowly 
in the 2-D simulation, with larger fluxes persisting until 
later times. 

Harmonics of the incident wave are excited in both 

simulations as the incident wave motion achieves large 
amplitude. In each case, these contribute positive fluxes 
at intermediate levels and early times (t ~ 60), sug- 
gesting wave structures with common phase slopes and 
directions of propagation with the incident wave. Some- 
what later, however, both 2-D (ky = 0) and 3-D (ky ½ 
0) eddy structures contribute fluxes which are initially 
positive above and negative below the region of primary 
wave breaking, due to the negative and positive wave 
and mean shears at these locations (see Figures 2 and 
6). The eddy fluxes transition to large negative fluxes 
at lower levels and later times (t ~ 70 to 80), due to 
the excitation of KH instabilities (the rolling structures 
seen in Figures 1 and 5) within the region of large wave 
and mean shears occurring at this position and time. 
These structures become very energetic in the 2-D sim- 
ulation and account for the large displacements of po- 
tentiM temperature and high eddy energy levels at late 
stages of the evolution seen in Figure 4. In the 3-D sim- 
ulation the KH structures are less energetic (see Figure 
7) and make their primary contributions in the ky • 0 
components of the motion field. The eddy momentum 
fluxes are discussed in more detail by Fritts et al. [this 
issue]. 

Mean Flow Evolutions 

Mean velocity profiles obtained in the 2-D and 3- 
D simulations are displayed together in Figure 9 from 
t = 40 to 90. These show, consistent with the momen- 
tum flux profiles displayed in Figure 8, that the major- 
ity of the mean flow accelerations have occurred prior 
to wave dissipation by energetic instabilities (t ~ 60 to 
70). Our purpose here is to examine the evolutions and 
their differences in the presence of 2-D and 3-D instabil- 
ities. The profiles are virtually indistinguishable until 
t ~ 60. Thereafter, however, the incident wave am- 
plitudes (and momentum fluxes) begin to differ in the 
two simulations due to the more rapid amplitude limits 
imposed by the 3-D instability. The differences begin 
to manifest themselves in the mean velocity profiles af- 
ter t ~ 70, where we note suppressed accelerations at 
greater heights and increased accelerations at lower lev- 
els in the 3-D simulation. These arise due to the greater 
momentum flux divergence at lower levels and the re- 
duced fluxes at greater heights imposed by the more 
severe constraints on the incident wave amplitude by 
the 3-D instability structures. 

An interesting consequence of the larger transports 
allowed in the 2-D simulation is the creation of a sig- 
nificantly larger mean shear in the 2-D than in the 3-D 
evolution near z2 ~ 0.3 and t ~ 70. It is this large shear 
that permits the evolution of much more vigorous KH 
instabilities in the 2-D than in the 3-D simulation (see 
Figures I and 5). The net effect of wave and instability 
transports of momentum in both cases is a reduction of 
the initial mean shear at greater heights and enhanced 
shears at lower levels, with the 3-D simulation leading 
to generally weaker shears and a broader distribution of 
the momentum transported vertically from lower levels. 

Summary and Conclusions 

We have developed a three-dimensional, nonlinear, 
compressible, spectral collocation model and applied it 
to the problem of gravity wave breaking in the atmo- 
sphere. To facilitate efficient simulation of the wave 
field evolution, we chose wave parameters that would 
yield rapid vertical propagation and transition to in- 
stability. To demonstrate the differences between two- 
and three-dimensional simulations of wave instability, 
we have compared in this paper the two-dimensional 
wave field evolutions and the energetics of the wave 
and instability structures in two and three dimensions. 
Companion papers by Fritts et al. [this issue] and Is- 
let et al. [this issue] address the detailed structure of 
the instability responsible for wave saturation and the 
subsequent transition to isotropic small-scale structure. 

Our simulations reveal dramatic differences between 

two- and three-dimensional evolutions of a breaking 
gravity wave. The major differences include a very 
much more rapid breakdown of the unstable wave struc- 
ture (within a buoyancy period), stronger constraints 
on wave amplitudes, and vigorous instability structures 
aligned parallel to the incident gravity wave in the 
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three-dimensional simulation (elongated in the stream- 
wise direction), relative to the two-dimensional sim- 
ulation. As a result, we conclude that wave break- 
ing, at least in the parameter range addressed by our 
simulations, is an inherently three-dimensional process 
that cannot be described in a physical manner in two- 
dimensional simulations. Thus the majority of the con- 
sequences of wave breaking for the atmosphere and 
oceans, such as the intensity, morphology, and intermit- 
tency of turbulence, the induced transports and turbu- 
lent diffusion of heat and constituents, and the implica- 
tions of wave-wave and wave-mean flow interactions for 

evolution of the wave spectrum with height and its influ- 
ences on the mean flow, may require three-dimensional 
studies for their resolution. We anticipate, however, 
that the more important consequences of wave break- 
ing in 3-D may be parameterized suitably in 2-D simu- 
lations once the effects are sufficiently understood. 

Additional work is needed to determine whether the 

results presented here are representative of wave break- 
ing for more general wave and mean flow environments. 
In particular, subsequent studies will address wave break- 
ing at lower intrinsic frequencies, in more general shear 
flows, in a multiple-wave environment, and the impli- 
cations of the induced turbulence for mixing and trans- 
ports. 
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